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Abstract

All the identities and integral theorems of vector calculus are contained in
the calculus of differential forms. The analogy between the exterior calculus
of forms and the homology theory of a cell complex yields discrete lattice
models for an array of interesting physical phenomena. These models, based
on arbitrary combinations of coupled scalar and polar or axial vector field
quantities, can be manipulated as conveniently as the standard scalar tight-
binding models. We develop Green functions (GFs) for an infinite hierarchy
of such models expressed using the four fundamental operators of the triangle
lattice. The triangle lattice is distinguished among two-dimensional grid types
for having the highest possible isotropy. Closed formulae are derived for GFs
of the scalar and vector models that belong to a hierarchy generated by the four
fundamental operators of the triangle family of lattices. The particular example
of lattice electromagnetism coupled to an elastic distortion field is treated in
detail. Topological properties not dependent upon symmetry split the response
functions into plasmon- and polariton-like parts. Since the fundamental vector
operators of the triangle lattice are related simply to adjacency matrices of the
Kagomé lattice, scalar GFs for this lattice are found also as a byproduct.

PACS numbers: 0270B, 0240

1. Introduction

This paper concerns lattice Green functions (GFs) for vector fields. These are developed in
a discrete version of vector calculus introduced recently. It is based on an analogy between
differential forms and simplicial homology theory in which the roles of the differential operators
divergence, gradient and curl are taken on by the boundary 3 and coboundary 8" maps [1].
In the process of calculating GFs for the vector fields on the triangle lattice, we also extend
the set of lattices for which scalar GFs are known in terms of elliptic integrals to include the
Kagomé lattice, depicted in figure 1.

The lattice vector calculus described in [2] places vector and scalar fields on an equal,
geometrical footing. With it, linear or nonlinear physical models become systems of finite
difference equations on a triangulating lattice. One can then treat vector or tensor fields with
a formal apparatus quite similar to that of differential forms [3] in the continuum case.
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Figure 1. The Kagomé lattice.

For our purposes, lattice GFs are entries of a resolvent matrix
G(H;2) = (z1 - H)™ (L)

defined for z outside the spectrum of H, which is a difference operator for some physical
phenomenon. The operator H could be a model Hamiltonian for lattice vibrations, spin waves
or independent electrons. We focus mainly on vector field operators. The most general lattice
dealt with by the new formalism is a rather general graph (simplicial complex) with the graph
vertex set serving as index set for H and the identity /. However, the work reported below
concerns the family of regular planar lattices with three- or sixfold symmetry.

Use of the GFs for introducing sources, changing boundary conditions of linear equations
or for developing a perturbation hierarchy in nonlinear problems is quite similar in the case of
discrete vector fields to their use for the scalar case. Usually the GFs are the physical response
functions. Non-perturbative methods such as renormalization make use of GFs also.

During the early 1970s several exact results were obtained for GFs in the case where H is
a discrete form of the scalar Laplacian operator based on nearest-neighbour differences [4, 10].
The GFs are combinations of integrals which in the cases of the square and triangle lattice
families reduce to complete elliptic integrals. The general triangle lattice family includes also
the honeycomb and other lattices. Horiguchi showed how the GFs of the honeycomb lattice,
constructed from two interpenetrating triangle lattices with nearest-neighbour interaction, can
be written in terms of those of the triangle lattice and thus also in terms of the complete elliptic
integrals of the first and second kinds [9]. Horiguchi and Chen [10] expressed the GFs of a
diced lattice, built on three interpenetrating triangle lattices with nearest-neighbour interactions
of strengths 1 and y, in terms of the triangle lattice GFs.

In section 2 we introduce notation, some homology theory is reviewed and some of the
formalism of [2] is outlined. In particular, the maps d and 3" on which the subsequent
development rests are discussed in some detail. To demonstrate transcription of a physical
model into the discrete formalism, an example of electromagnetism in a polarizable medium
is developed. The fundamental operators of the forms 99" and 379 and their GFs are discussed
in section 3. We show how to use these to reduce GFs of a rather general linear model.
Reduction of the GFs for the electromagnetic example given in section 2 in terms of GFs of the
fundamental operators is presented in some detail. Generating functions for the fundamental
GFs are introduced in section 4. Their use for finding relationships between scalar and vector
GFs and for computing the GFs is illustrated by examples. Section 5 lists the diagonal GFs in
terms of elliptic integrals. The conclusion contains notes on GFs with more general boundary
conditions and some observations on the relation between the scalar and the vector GFs on the
triangle family of lattices. A complete table of scalar and vector GFs for the triangle lattice,
and scalar GFs for the Kagomé and the honeycomb lattices, is presented in appendix A.
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2. Vector difference calculus

We introduce notation and review some simplicial homology theory (see also [2]). Consider
first a general region in three-dimensional space. To construct a formalism for vector fields, the
space is represented by a triangulating graph, regular or not, on which points in the space are
graph vertices. The graph defines a simplicial complex on which calculations are carried out.
The vertices (0-simplices), oriented bonds (1-simplices), triangles (2-simplices) and tetrahedra
(3-simplices) of the complex serve as a bases for quantities analogous to scalar, polar vector,
axial vector and pseudoscalar fields. A p-field is represented as a formal sum over all p-
simplices of the complex. What we shall call p-fields are in standard nomenclature p-chains
(and p-cochains) with real or complex coefficients [1]. The coefficients correspond to the field
strengths or field components in the continuum case. We use the notations (i), (i, j), (i, j, k)
and (i, j, k, 1) for O-, 1-, 2- and 3-simplices, respectively. If (i, j, k) is a 2-simplex, then
vertices i, j and k must be mutually adjacent. Each p-simplex is oriented, so interchanging
a vertex pair changes the sign, hence for example (i, k, j) = —(, j, k). Thus (i, j, k) is a
right-hand oriented triangular plaquette, while (i, j) is a directed edge or bond from i to j. A
polar vector field u is a 1-field

w=Y uji. j) 2.1)
[ij]
where the coefficients are antisymmetric u j; = —u;;. An axial vector field v is a 2-field
v="Y vli. j. k) 2.2)
[ijk]

again with antisymmetric coefficients. The summations are over distinct p-simplices. Thus,
to each graph vertex i (each point in discrete space) there corresponds a set of tangent spaces
generated by all the p-simplices that contain i. These simplices serve as a geometric basis.
The finite-dimensional vector space generated by this set is analogous to the local cotangent
space of grade p in the calculus of differential forms. The space of 0-fields (scalar fields) at
i is generated by the single basis object (i), while the space of 1-fields is the real or complex
vector space generated by the union over all points i of the star of edges radiating from i. Each
of these edges is of the form (7, j) with j adjacent to i, which we denote by j @ i. A p-field,
then, is a vector in the space generated by all p-simplices of the graph.

Let C,, represent the space of p-fields. The boundary 9, maps C, into C,_;, while the
coboundary 8; maps C, into Cpyy. The map subscript indicates the domain in each case.
Sometimes it can be omitted without causing confusion, but for the most part it will be retained
here for clarity. 9 is defined to be the linear map such that

(i) =0 (2.3a)
01, j))=0U)— @ (2.3b)
021, j, k) = (j, k) — (i, k) + (@, J) (2.3¢)
K, j kD) = (kD) — Gk, D)+ G,y D) — G,y j, k) (2.3d)

the rule being to delete each vertex in turn with alternating sign. Thus in each case 9 takes a
simplex onto its oriented boundary.

An inner product between p-fields (...,...), the analogue of integration in standard
calculus, is defined for each p by

Sik b
(G, j, .., (e, .. )y =det | Sk 81 - (2.4)
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Figure 2. Relation between 37 and 8 and div, grad and curl.

where (7, j,...) and (k, [, ...) are oriented simplex basis elements of C,. As in the standard
calculus, the inner product is defined for two p-fields only if the corresponding summation
converges (perhaps to infinity). The coboundary of a basis simplex in C,, is a sum of simplices
in C,41, the boundary of each of which contains the basis simplex with coefficient +1. With
respect to the inner product, the coboundary map 8; is simply the dual of the boundary map
0,41 defined by the identity

(@50, ¢) = (¥, 9pn10) 2.5)

where ¢ is a (p + 1)-field and ¢ is a p-field, provided these fields satisfy some physically
reasonable conditions [1].

In the analogy to vector calculus, 3 and 3" take on the role of V in forming gradient,
divergence and curl. The duality between 0,.; and 8; gives rise to Stokes-type integral
theorems. For example, let ¢ be a 1-field with zero coefficients except for coefficients +1
on a directed polygonal path from vertex i to vertex f. This is the discrete version of an
oriented contour. The contour integral of vector field u along c is then (u, c). If ¥ is a scalar
field, the fundamental theorem of calculus is just the identity

fwf LdF = (90, ©) = (¥, dic) = Yy — V. 2.6)
c
This shows that 33 acts as the gradient. Discrete analogues of vector integral theorems,
including Green’s, Gauss’ and Stokes’ theorems, developed in this way, guide the identification
of the actions of @ and 8" with standard vector operations. The correspondence is worked out
in [2] and is shown in figure 2. The essential property of the boundary map is 3> = 0, meaning
that 9,_19, ¢ = O for any arbitrary p-field. Hence also (3")? = 0. This is necessary so that
the composite operations div o curl and curl o grad give zero.

One can now transcribe physical models from the continuum to the lattice in a natural way.
For example, a vacuum electromagnetic theory can be built from discrete Maxwell equations.
We assume a three-dimensional lattice, and, in order to concentrate on the physical idea rather
than the subscripts, use the generic notations d and 3. From figure 2,

IE = —p (2.7a)

0B——=1J 2.7b
m” (2.7D)
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dB
FE+—=0 (2.7¢)
dr

"B =0. (2.7d)
Polarization response of an elastic medium with displacement from equilibrium given by the
1-field u can also be included. We adopt a Navier equation of motion for u,
U Bk — vy — o' 2.8)
m— = —ku —add'u — u .
a1
where m and ¢ reflect mass and charge per unit volume, a and b are combinations of Lamé
elastic constants and the local spring constant k pins the medium to prevent uniform translation.
Next, couple the 1-fields u and E via

J =g (2.9)
T '
so that the medium is non-dissipative. Thus one can assume
P = po+p1 (2.10a)
p1=03(qu) (2.10b)
so that
dp
oJ = —. 2.11
7 (2.11)

One arrives at coupled equations of motion for # and E, which decouple in the frequency
domain to give

(0] — 0®) +a?3d" + 2879) (30" — w?) — W}’ E = F (2.12)
where wy = k/m, w; = q/~/m, a = J/a/m and B = /b/m, and an external driving term

F(w) (a 1-field) has been added. This example, though mostly germane to three-dimensional
space, shows the form of a fairly typical lattice operator.

3. Fundamental operators

From the correspondence between d,, and 8; and divergence, gradient and curl, it follows that
the combinations 9, 8; and 8;:_1 d,, act as the differential operators div o grad, grad o div or
curl o curl depending on the value of p. From these fundamental operators it follows that the
Laplacian has the same form for each p,

V2= —(3) 1 0y +0ps1 9)). 3.1
For p-fields u# and v,

(0ps1 0fu, v) = (0 u, 0/ v) = (u, 41 9} v) (3.2a)

(@7 dpu, v) = (Bpu, dpv) = (u,d)_, 3,v) (3.2b)

sothat 9,4 8;; and 0
the eigenvalues of the discrete Laplacian are non-positive. 9, 8; and 8;_1 d,, are orthogonal

,—1 0p are Hermitian. Their eigenvalues are apparently non-negative so that

and hence commute since (9,41 8;)(8;71 0,) =0= (8;l 0p)(0p+1 3;). In the current paper
one is not concerned with the numerical weights required to make equation (2.6), for example,
reduce to the continuum limit. These weights are tabulated for the case of the triangle lattice
in [2]. The difference operators presented above have correct topological or combinatorial
properties. The GFs derived below are thus to be scaled according to the application one
wishes to make of the corresponding difference operators.
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Of interest at present is the relation between the fundamental operators and certain graph
adjacency matrices. In general, 9; 83 relates simply to the adjacency matrix H of the graph
defined such that H;; = 1 when i @ j and H;; = 0 otherwise. This comes about because ag
is an incidence matrix for edges incident to a given vertex and 9; is the Hermitian adjoint of
the matrix ;. (This relation may appear notationally awkward, but recall that the map suffix
specifies the domain.) Therefore vertices are adjacent because they are incident to the same
bond. Thus,

30, =—H+P (3.3)
where P is the diagonal matrix with entries equal to the coordination numbers of the vertices
of the graph so that P;; = §;; >, Hjx. Since 9, (or 8;) for each p is a generalized incidence
matrix, the other fundamental Hermitian operators for a two-dimensional lattice, namely 83; 01,

0> 8: and Bf d,, correspond to edge adjacency matrices or to face (triangular cell) adjacency
matrices. The correspondences give rise to various types of lattice duality.
Laplace or Fourier transforming a linear inhomogeneous system of differential-difference
equations of the general form
(@419, 8;71 0y, d/d)u = F 3.4
where F is a source term, leads one to consider an operator of the form G(z) =
f (@41 0], 8;_1 d,,2)"!. Then, the fact that 3 = 0 and (37)? = 0 reduces G(z) to

G(2) = f(0pr1 9.0, + £(0.8_,8,,2)7" = £(0,0,2)7". (3.5)

For a rational function f(x, y, z), equation (3.5) may be expressed using the extension theory
for lattice GFs [11] (see also appendix B) in terms of matrix elements of the resolvents

G(33"32) = (z = pe1 9))~" (3.6a)
G@'0;2) =(z—0)_9,)". (3.6b)

Thus very general linear problems defined on a given lattice are solved in terms of only
the GFs of the fundamental operators. To illustrate this point, consider the electromagnetic
example of the previous section. In view of equation (3.5) there are two pertinent GFs, namely

Ga(®) = [02(337)? — [(1 + dP)w* — @}]89" + 0*(0* — QP! (3.7a)
1
Gy(w) = —[(0® — Q%) — B2079] 7" (3.7b)
w
With these, the general solution is

E(@) = Ga(@)F(w) + Gp(@)F(w) — — F(w) + Eo(w) (3-8)

(0? — Q%)

where Ey(w) is any homogeneous solution and we have used the notation Q = ,/a)(z) + w%.
Using the residue methods of [11],

. 1 i (1+ot2)a)2—a)(2)—«/R(a))
= (" 2 )
. (1+a®)w? — 02 + /R(w)
— . 0
G<88 ; a2 )] 3.9
where

R() = [(1 — &®)o® — W] + 4’ wiw? (3.10)



Triangle lattice Green functions for vector fields 595

and

1 o w? — Q?
Gy(w) = ﬂzsz(B 8,T>. (3.11)
One sees G,(w) is the propagator for transverse or polariton modes, while the GF G, (w)
characterizes longitudinal or plasmon excitations. In a like manner the GFs for a wide range
of physical models represented by equation (3.4) can be reduced to closed formulae, provided
the lattice GFs for the fundamental operators are known.

4. Lattice Green functions

Of primary interest are elements of the resolvent matrix obtained from equation (1.1) with each
of the fundamental linear operators in turn substituted for the generic H. We specialize to planar
lattices of the triangle family, so there are no 3-fields, and 2-fields behave as pseudoscalars
rather than as axial vectors. To simplify notation, let

Ag=—3 0] (4.1a)
Ay =0, (4.1b)
B = -3 8 (4.1¢)
B, = 9] 0,. (4.1d)

The index set of each of these matrices is that of the set of basis simplices for the p-fields on
which they operate; thus it is the set of vertices for A, edges for A; and B; or faces of the
lattice in the case of B,. Signs in equations (4.1a)—(4.1d) are chosen to make the operators Ay,
A1, By and B, correspond to div o grad and curl o curl for 1-fields, and grad o div and curl o curl
for 2-fields, respectively.

Figure 3(a) shows the triangle lattice with lattice spacing taken as 1 and vertex coordinates
(m, n) with respect to a Bravais lattice with translation bases d; = £ and d, = £/2 + +/39/2.
It is convenient to use a special notation for the simplex basis. The particular choice defined
in figure 3 is useful for fluid dynamics, since a 1-field with all positive components is a net
flow to the right. As we shall see presently it will sometimes be useful to choose &, ,, to point
the opposite way, which can be effected by sign changes. Figure 3(b) shows the rhombic unit
cell associated with (m, n). The cell edges are indexed 1, 2 or 3 and the faces 1 or 2 so that

, stands for an edge or face with index « in a cell with coordinates (mm, n) (the distinction
between edges and faces should be clear from the context of the equations). In this notation,
entries of the matrix G(H; z) are

(@, GH:)eh )y =G, (H:2) (4.2)
where H can be A, By or B,. The case of H = A is simple since there is only one vertex

per cell.
Due to translation symmetry, the defining relation

(zI —H)G(H;z)=1

implies
D 12850840 8an — Hot 0.0 1G p g (H: 2) = 8110 810 Sap- 4.3)
Peq.

It is convenient to introduce generating functions for each operator H and for each of the GFs:
g (Hix,y;2) =) G (Hix)x"y (4.4)

WP, y) = HE 00X Y 4.5)
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(m-1,n+1)

(m-1,n) (m,n)

(m,n-1) (m+1,n-1)

(@) (b)

Figure 3. The triangle lattice (a) with vertex labels and (b) cell (m, n).

With matrix notations g(H; x, y; z) and h(x, y) equation (4.3) becomes
(!l —h(x,y)g(H;x,y;2) =1 (4.6)

where [ is the identity of appropriate rank.
The matrix forms Ay, A and B, of the fundamental linear operators of the triangle lattice
are related to the graph adjacency matrices of several standard lattices:

AO = Htriangle —-61 (47&)
O'A]O’ = HKagomé +21 (47b)
‘L’Bz‘L’ = Hhoneycomb +31 (47C)

since Hygagomé and Hponeycomb correspond to edge and face duals of the original lattice, which is
the graph of Hyangle (hereafter abbreviated to Hx,g, Hion and Hy;). The matrix o only changes
the sign of the « = 2 component of 1-fields. This unitary transformation adjusts signs to make
the entries of the adjacency matrix Hy,e either O or +1. Similarly, T makes a sign change in
the « = 1 component of 2-fields to bring Hy,, into standard form.

Starting with Ay, the generator Ag(x, y) is a single function (i.e. it is one dimensional)
such that

g(Ag; x,y;2) = (2 — Ag(x, )" = (2 +6 — Hyi(x, y) ™"

1 1 -
=<z+6———x———y—f—X> . 4.8)
X y y X
For Ay,
z—2 l+y —(1+1/x)y77!
g(A1sx,y;2) = [ I+1/y z—2 L+y/x } 4.9)
—(1+x)/y 1+x/y 7—2
Taking the inverse,
1
gALx,y;2) = z A(x,y;z) g(Ao; x, y; 2(z — 6)) (4.10)

where the factor A(x, y; z) is a 3 x 3 matrix of Laurent polynomials in x, y and z. Likewise,

-3 1+(1+1/x)yi|1

g(Bayx,y;2) = |:1+(1+x)/y L3 (4.11)
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so that
g(Ba;x,y;2) = Ax, y; 2) g(Ag; x, y; 2(z — 6)) 4.12)

where A(x, y; z) is a 2 x 2 matrix of Laurent polynomial factors.
Expanding equation (4.8) in x and y, the GFs G, ,(Ao; z) are obtained as coefficients.
Comparing with [9], one finds that

1 <(z+6)

Gm,n(AO; Z) = 5 r )

where I'(¢, m, n) is the triangle lattice GF for scalar fields computed by Horiguchi. Comparing
to the GFs obtained from

G(Hyi; z) = (zI — Hyy)™! (4.14)

,2m+n,n) 4.13)

one sees that

G (Hyis z) = G(Ag; 2 — 6). (4.15)
As a notational convenience, let

G(z) = G(Ao: 2). (4.16)

Expanding equation (4.10) in x and y leads to GFs of the Kagomé lattice, obtained from
the resolvent

G (Hiag; 7) = (2] — Hiag) ™" (4.17)
via
G(HKag;Z) :GG(AI;Z+2)0- (418)

The Kagomé GFs are thus expressed in terms of those for the triangle lattice. Similarly, the
honeycomb lattice GFs are obtained by expanding equation (4.12) in x and y and making use
of the relation

G(Hhon; Z) =T G(BZ; Z+ 3) T. (419)

By means of this type of expansion and equation (4.18) with (4.13) or (4.15), the GFs
for the Kagomé lattice are written alternatively in terms of either the GFs defined above from
G (Hyi; z) or else formulae of [9] involving complete elliptic integrals of the first and second
kinds. The GFs for A, B; and B, as well as for the Kagomé lattice adjacency matrix are
tabulated in the appendix. For completeness, the GFs for the honeycomb lattice adjacency
matrix (in agreement with [9]) are also tabulated. All the GFs in appendix A are expressed via
G(z) for the A operator, which in turn relates to Horiguchi’s study by way of equation (4.13).

5. Diagonal Green functions

Here we give the diagonal GFs for each lattice type. These give densities of states or projected
eigenvalue densities. They also provide spectral functions used for the GF extension formalism
of [11]. For any «,

1 2

Gi%(Ari ) = ot 3—Z(z2 —32+3)Goo(z(z — 6)) (5.1)
2 1

Goo(Bis z) = 3z + Z(Z +12) Go0(2) (5.2)

Goo(B2; 2) = (2 — 3) Goo(z(z — 6)). (5.3)
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The honeycomb and Kagomé scalar GFs are therefore as follows.

1 2
3(Z +2) + 3(Z +2) (Z +z+ l)go,o((Z - 4’)(2 +2)) (54)

G0(Hhon; 2) = 2 Go,0((z — 3)(z +3)). (5.5

The GF for Ag relates to [9] through equation (4.13). Thus Gy ¢(z) is evaluated as follows.
Let

Gg,o([)(HKag; )=

r=+z+9 (5.6a)
g=@r—-1D7Pr+3)7? (5.6b)
k = ﬁq (5.60)
then
2 ~
Go,0(2) = 4 K (k) 5.7

where K (k) is the analytic continuation described in [9] of the complete elliptic integral

/2 de
K (k) = / —_— (5.8)
0 /1—k%sin’6

The integral is analytic in k except for a cut from 1 to oo on the positive real axis, and another
from —1 to —oo along the negative real axis. Start with k just above the cut on the positive
real k£ axis where the phase is near 0. Sheet I of k is the region of analyticity on which
K (k) = K (k). The part of the Riemann surface reached by moving upward across the cut on
the negative k axis into the second quadrant is sheet II. The part reached by crossing the same
cut downward into the third quadrant is sheet III. The analytic continuation onto sheet II is
K (k) = K" (k) = K (k)+2iK (k') and that onto sheet Il is K (k) = K" (k) = K (k) —2iK (k'),
with k' = /1 —k+/1+k. Useful formulae for computing G, ,(z) are also given by
Kleinert [12].

Finally, the van Hove singularities in each case are as follows. Both Ay and B; have
singularities in z at —9, —8 and 0, while both A, and B, have singularities at 2, 3, 4 and 6.
Kagomé lattice van Hove singularities are at —2, 0, 1, 2 and 4, and the honeycomb lattice van
Hove singularities are at 0, =1 and +£3.

6. Conclusion

The lattice GFs for the fundamental second-order linear difference operators 9, 8; and 8;_1 9,
appearing in a development of vector difference calculus on a triangular lattice are related to the
scalar GFs computed by Horiguchi [9]. In particular, the main results are the explicit GFs for
the polar vector operators A; and B corresponding to curl o curl and grad o div, respectively.
Formulae for all the GFs are tabulated in appendix A. With them, GFs for the general linear
system, equation (3.4), for problems involving scalar or vector fields on a triangular lattice
can be obtained in closed form in terms of complete elliptic integrals. The scalar GFs on the
honeycomb and Kagomé lattices were found in determining the GFs on a triangle lattice.

For each case tabulated in appendix A, the boundary condition |(é‘;§, ” G(z)é,’f,’nﬂ <M
for some M has been assumed as (m — p)> + (n — q)> — oo. GFs for operator A with
more general boundary conditions are constructed using the kernel or null space of A, i.e.
the subspace of C, annihilated by A. For example, the kernel of the discrete Laplacian
V[Z, = —(8;718,, + 8p+13;§) contains for p = 1 the two 1-fields with constant components,
namely w; = (1,2, 1), w, = (1, 0, —1), independent of the site or position index (m, n). But
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to match boundary requirements in compact regions we relax the constraint that the solution
w of V2w = 0 remain bounded at co. Because the difference equation is linear with constant
coefficients, we assume wj, , = c,x™y" and relate x to y so that the equation V2w = 0is
satisfied. This requires p(x, y) = 0, where

p(x,y):é—x—;—y —————— . 6.1)

Solving simultaneously p = 0 and dp = 0 shows a critical point at (x, y) = (1, 1), from
which we obtain the parametric family of roots

_(t+1)(t+2)

1) = 6.2
x (1) =D (6.2a)
t+DH2t+1)
y)= ——— (6.2D)
t—1
and so the general solution for V2w = 0 is
Wi = / P x@)" y@) " (t+ 1)t +1),2t+1,¢t+2)dt (6.3)

where ®(¢) is arbitrary. In general, ¢ is complex and the integral is over a two-dimensional
region in Re (¢) and Im (7). In generic terms, the more general GF is of the form G'(z) =
G(z) + w, with G(z) as tabulated in the appendix and w to correct the boundary conditions.

It is interesting to consider the algebraic origin of the relationships among the GFs for the
operators of equations (4.1a)~(4.1d). First, if A,u = iu, then B 18fu = 8] A,u = 29/ u.
Thus

. 1 1. -
G(Bp+1; ) =(z— 8; 8p+l)_1 = z <1 - z 8; ap+1>

! ! i 1 ¥ il ! T T T
= Z 1+28p 8p+1+z—28p ap+1 8P 3p+1 +Z_38p 8p+1 3p 8p+1 Bp 8p+1 + .-

1 ;
= S (49, (2= 0ps10)7" pu)

1
=1+ 3]G (Ap; 2)9ps1)- (6.4)

This accounts for the relationship between the GFs of Ay and B; and between A; and B;. The
origin of the relationship between GFs for Ay and B, is also algebraic, which can be seen as
follows.

First, it is easy to see by induction that if H is the adjacency matrix for some graph, then
the number of walks of length »n from vertex j to vertex i is (H");;. The honeycomb lattice
is a bipartite graph, meaning that it divides into two sublattices a and b with a sites adjacent
only to b sites and vice versa. Thus HZ _ is the direct sum of two identical adjacency matrices,
one for the a and one for the b sublattice. The non-zero entries (HZ,);; are for pairs (i, j)
connected by a two-step walk, hence either i = j or else i and j are neighbours on the same
sublattice. Therefore the aa and bb sub-blocks of (thon) are each Hy; + 31. This shows there
is an algebraic relationship between Hy; and Hyo,. To obtain equation (4.12) from it one must
use the graph duality between triangle faces and honeycomb sites and take sign changes due
to antisymmetry of the 1-simplex basis into account.

Finally, we have seen that the GFs for a rather general linear model come from the GFs of
the fundamental operators. To make use of this it is convenient to know some of the spectral
properties of the operator algebra generated by the orthogonal pair A, = —(—=1)70,.; 8; and

B, = (=1? 8;71 dp, particularly for p = 1. The diagonal GFs for each operator discussed
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above are expressed in terms of Gy (z), which in turn is given explicitly in terms of an elliptic
integral. The density of eigenvalues for a generic operator A, as expressed by equation (3.4),
is

DA(E) = —% nlii%k Im (Tr[G(A; E +in)]) (6.5)

where the trace is over cell index «. The van Hove singularities are branch points of the analytic
continuation of G(A; z). These singularities correspond to the possible continuum limits at
which the difference equations can lead to partial differential equations that do not depend on
the lattice spacing a as a — 0.
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Appendix A. Green functions for fundamental operators on the triangle lattice

The following is a brief summary of GFs for the complete set of fundamental operators for
vector fields on the triangle lattice. Also tabulated are the scalar GFs for the Kagomé and
honeycomb lattices. GFs for A; = 828? or curl o curl for 1-fields or polar vector fields are as
follows. Let ¢ = z(z — 6), then

Gy (A7) = %[(z2 —42+2) G (&) = Gin—1).0+1) (€) = Gamsyn—1)(€)]

Gyly(Ari7) = —%[gw_l),n(s) + @ =D Gu=1)(®) + @ — 1) G (&) + Gy, (a1 ()]
Gy (A 2) = %[(z = 1) Gnon=1) (&) + G () + Gy 0-2)(€) + @ = 1) Gama), (a1 (€)]
Gy (A7) = —é[gon_]),w])(s) + (@ = 1D Gun(®) + @ = 1) G et (&) + Gy n (8)]
G2, (413 2) = £ 42+ 2) Gue) = Gon- 106 — Gt 1€

G (A7) = —%[gm,wn(e) + (@ = 1) Gun (@) + @ = 1) Gonst) -1y (&) + Gimsy n (8)]
Gy (A1 2) = %[(z = 1) Gan1),051) (&) + Gim1).042) () + Gnn (€) + (2 = 1) G (41 ()]
Gl (A7) = —%[gw_l).n(s) + (@ = D G141 (@) + (@ = 1) G (&) + Go 1y ()]
G (A z) = %[(z2 —42+2) Gn(8) = Gontn—1)(8) = G, (ne1) (E)].

The following are GFs for B; = —ag d; or grad o div for 1-fields, or polar vector fields.
G, ,(Bi;2) = %[(z +4) G (2) = G111 (@) = G =1 (@) = G, 1+1) (2) = Gty (2)]

1
G,],,z,n(Bu 7) = E[Q(mq),n(Z) = Gn,(1=1)(2) = G0 (2) + Gins1), (n—1) (2)]
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1

G, (Bi;2) = Z[gm,(n—l)(z) = G (@) = Gn+1),(1-2)(2) + Gn+1),(0—1)(2)]
1

G, (Bi;2) = 2 190-0.000@) = G @) = G ) + G0 (2)]

1
ngz,n(Bl; Z) = E[(Z +4‘) gm,n(z) - g(mfl),(n+1)(z) - gm,(nfl)(z) - gm,(n+1)(z)
=G m+1),(1—-1)(2)]

1

G, (Bi;2) = ~1Gn.0-0 @) = Gnn(@) = Gonen). 1= @) + G n ()]
1

Gil’n(B]; 7) = E[g(m—l),(nﬂ)(z) = Gon—1),142)(2) = G .n (@) + G 41y (2)]
1

G,3,12,n(31§ 7) = Z[g(m—l),n(z) = Gim=1),(0+1) (@) = G0 (2) + G, (1) (2)]

1
G, (By;z) = E[(Z +4) Gnn(2) = Gn—1),0(2) — Gn=1),(141) (@) — Gim+1),(n—1)(2)
—~Gm+1),n (D]

The following are lattice GFs for B, = 8f82 or curl o curl for 2-fields, which on the triangle
lattice are pseudoscalar. Let ¢ = z(z — 6), then

G, (B2 2) = (2 —3) Gun(e)
G2 (B2 2) = —[Gmin—1)(€) + Gnn (€) + Gty (n—1) ()]
Gyl (B2; 2) = —[Gm—1),(n41)(€) + G (&) + G, (1) (8)]
G2 (B2 2) = (2 — 3) G (e).

Here are the Kagomé lattice scalar GFs in terms of the scalar triangle GFs. Lete = (z—4)(z+2),
then

1
G,y (Hiag: 2) = m[(f =2) G (8) = Gm—1),01+1) (&) — Gma), (-1 (8)]
1
G’ (Hgag; 2) = “—2[@%1),”(8) + @+ 1) Gnin1) (&) + @+ 1) Gn (&) + Gmst). -1y (€)]

1
G, (Hyag; 2) = 321 DGn-1(©) + Gnn(®) + Goneny-2) ()
+(z+ 1) Gons1), =1y ()]

G (Hiagi ) = —1Gn-0.0) () + @+ D) Gonn(€) + @ + 1) G 0v1) () + Gomeny.n e)]
1
Gy?(Hiag: 2) = Z3[@2 =2) Gnn(8) = Gm-1).0(8) = Gms1).n(8)]
1
G, (Hgag: 2) = 5219000 + @+ 1) Gon(®) + @+ D G -1 () + Gney o €)]
1
Gil,n(HKag; 7) = “—2[(Z+1) Gin—1),0041) (&) + Gim—1),n+2)(€) + Gnu (&) + (2 + 1) G (ns1) (€)]
1
G’ (Hyag: 2) = 7339000 (&) + @+ D G0 ) + @+ D) Goron(©) + G ey (€]

1
G, (Hgag; 2) = Z3[@2 ~2)Gnn(®) = G n-1)(€) = Gon.nr1) ()]
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For completeness we present the honeycomb lattice scalar GFs derived also in [9]. Let
e=(z—3)(z+3),s0

G, (Hhon: 2) = 2 G (€)
G2 (Hnon 2) = G, 0—1) (&) + G (€) + Gy, (n—1) (€)
Gil,n(Hhon; 2) = Gn—1),+1) (&) + Gi.n (&) + G (na1) (€)
G2 (Hnon; 2) = 2 Gun(e).

Appendix B. Green function extension theory

Let H be a Hermitian matrix representing a difference operator on any lattice, and suppose the
GFs for H, which are entries of the resolvent matrix

g@)=@—H)"' (B.1)

defined for complex z outside the spectrum of H, are known in closed form. Now suppose
one needs the GFs defined by

G(@) = (z— f(H)™". (B.2)
For simplicity, assume f (x) is a rational function such that the rational expression
1
R(z,x) = ——— (B.3)
z— f(x)
is regular at infinity and has only simple poles {x;(z)} with residues {R(z)} for k =
1,2,3,..., N. Using the spectral representation for H in the Cauchy integral formula for
G(z) gives
1 R(z, x)dx 1
G(iz)=— — (= - R(z,x)d B.4
@) =5~ fé Zﬂj W = p g@RE A (B

where C; encloses only the singularity x = z, and C, contains only the other singularities
x = x;(z) coming from R(z, x). Since H is a large matrix the sum over y contains a large
number of terms, each one difficult to compute; the expansion is only of use formally. However
one takes advantage of the fact that R(z, x) is rational. Thus from the residue theorem,

N
GQR)=—Y Ri(z) g(x(2)). (B.5)

k=1
The sum now is over the N poles in x of R(z, x), of which there are typically only a few.
Therefore the latter is an explicit formula for the desired GFs G (z).
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